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Abstract-In this paper, generalized variational principles in the finite deformation theory of solid
mechanics, called the generalized mixed variational principles (GMVP), are established. Their
distinctive feature is that the functionals contain some arbitrary additional functions, called the
splitting factors. GMVP brings to light more profound relations among existing variational prin
ciples, turning them into some special cases ofGMVP and supplying a new mathematical foundation
for numerical analysis. Applying GMVP to FEM, one can take advantage of the splitting factor to
improve its precision and to circumvent some special problems, such as ill-conditioning, which
often appears in non-homogeneous media, anisotropic material, incompressible bodies, singularity,
penalty method and so on. In addition, this paper will give a general criterion with which to choose
the splitting factor for the optimal numerical solution.

1. INTRODUCTION

Recently, a new and original type of variational principle in solid mechanics has been
developed. It was first put forward in Rong (1981 a, b) and applied to FEM (Rong, 1981c, d,
1985). Its distinctive feature is that the functionals contain some arbitrary additional
functions, called splitting factors. Later, Qian (1983) discussed the same type of variational
principles. However, they were all linear theories. The present paper will present this type
of variational principle for the non-linear theory, called the generalized mixed variational
principle (GMVP). The motivation to establish GMVP came from the following idea of
research in FEM. As is well known, the usual FEM model, which stems from the minimum
potential energy principle, is more rigid, while the complementary energy principle makes
it more flexible than the real body. Therefore, it is hoped to arrive at some intermediate
case, i.e. to obtain a numerical solution lying between the lower and upper bounds (Zien
kiewicz, 1977). One expects it to be closer to the exact solution. To this end, one has to
search for a new type of variational principle which has the following two characteristics.

1. Its functional contains both the strain energy and the complementary one.
II. The component of the strain energy (or the complementary one) can be adjusted

arbitrarily.

The first requirement is apparent, otherwise one could return to the old way, while the
second is also necessary. As the exact solution lies between the lower and upper bounds, it
is impossible for the numerical solution to approach the exact one without a factor to
adjust the contribution of the strain energy (or the complementary one) to the functional.
Obviously, the desired principle must be of mixed type. Although there have been several
mixed variational principles (Washizu, 1975; Qian, 1980), none of them possess both
characteristics I and II together as the new type of variational principle (linear theory)
presented in Rong (1981a, b) does. Characteristic II is embodied in the arbitrary splitting
factor, showing the portion of the strain energy in the functional.

2. THE SPLIT FORM OF BASIC EQUATIONS IN NON-LINEAR ELASTICITY

In order to establish the new type of variational principle for the finite deformation
theory, it is necessary to introduce some fresh concepts to describe the constitutive law for
the non-linear elasticity. Below one will build up a new set of basic equations, which are
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equivalent to the traditional ones and convenient to discuss GMVP. In Cartesian coor
dinates Xi' i = 1,2, 3, the traditional form of the basic equations for the finite deformation
theory can be given by

[(bki+Uk,i)aijL+Fk = 0 in V

eij = !(Ui,j+Uj,i+Uk,iUk,) In V

8A
inaij=- V

8eij

or

8B
ineij=- V

8aij

Ui = Ui on Su

Pi == (bki +Uk,;)aijn j = Pi on Sp

(1)

(2)

(3)

(4)

(5)

(6)

where Vis the body domain with its surface S = Su+Sp, subjected to the body force Fi. On
Su are given displacements ui and on Sp boundary forces Pi' Ui, eij and aij denote the
displacement vector, the strain tensor and the stress tensor in Cartesian coordinates, respec
tively; nj is the outward unit vector normal to the surface S; bij is the Kronecker symbol
and (.. '),j denotes the derivative with respect to Xj' A and B are the strain energy density
and the complementary one

and

In the following one introduces a new form of basic equation equivalent to the above
one.

Let !3ijkl be some arbitrary fourth-order tensor over V, called the splitting factor, which
satisfies certain requirements

(7)

With the help of !3ijkl one splits aij into two parts

(8)

or

(9)

where

(10)

at is called the split stress tensor. More constraints are put on !3ijkl
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and for any non-zero symmetric second-order tensor Gij

In addition, one introduces another fourth-order tensor IXmnij associated with Pijkl

IXmnij = IXnmij = IXmnji

where U = IXU* is the abbreviation for

(12)

(13)

(14)

(15)

(16)

which is guaranteed by eqns (10), (13) and (15).
For the given A, B and a chosen splitting factor one can introduce two new energy

density functions, denoted by A* and B*, as follows

From eqns (9) and (16)-(18), one has

aB* )eij=~
UUij

uij = ~A* +ut.
Ueij

(17)

(18)

(19)

Below one will show that to express the constitutive law, eqn (19) is equivalent to eqn (3)
or (4). First, note that eqns (11) and (14) are the requirements to make A* and B*
independent of the integrating paths. Therefore, for the given A, B and a chosen splitting
factor, there must exist a definite A* and B*. Second, eqns (3) and (4) are equivalent to
each other, i.e.

aA aB
Uij = ~<=> eij =~'

ueij uUij

Next one will show the equivalence (19) <=> (3) or (4), i.e.

(20)

( eij = ~:; and uij = ~~.* +ut)<=> (Uij = ~e~. or eij = ~B). (21)
IJ u IJ U IJ uUij

In fact, as A* and B* are defined by A and B, «3) or (4)) => (19) holds naturally. Hence,
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one has only to show (19) = «3) or (4)). From the first part of eqn (19) and equivalence
(20), one has

oB*
eij =~ eij(fY.(J*)

u(Jij

then

Noting eqn (15), one has

Finally, from the second part of eqn (19), one obtains

Hence, equivalence (21) is proven. In addition, under the condition (J~ = (OikOp-{3ijkl)(Jkl
one has one more equivalence

(22)

Thus, one has three options (3), (4) and (19) to describe the constitutive law. In this
paper eqn (19) is used. Equations (1), (2) and (19) together with boundary conditions (5)
and (6) are taken as the basic equations for the finite deformation theory and are called the
split form of the basic equations. It is apparent from the above discussion that the split
form is different in form from the usual one, but completely equivalent to it. The new
form contains some arbitrary additional functions, which will play an important role in
establishing the new models of FEM.

3. GENERALIZED MIXED VARIATIONAL PRINCIPLES

For the new set ofbasic equations, a new type ofvariational principle can be established.
Its functionals may have four classes of independent function variables, defined as

TI 4 =1[A*+«(J~-(J ..)e-B*+-21(U+U··+Uk·Uk ·)(J-F'kUk] dVp Ij IJ lJ 1.J J,l ,I ,j I)

V

TI4c = 1«(Jij-(J~)eij-A*+B*+~Uk.iUk.j(Jij+ {[(Oki + Uk,J(JijL +F'dUk) dV

- r (Pk~ j\)Uk dS - r PkUk dS = - TI 4p ' (24)
Jsu Jsu

The variational principle can be stated as: among all the admissible functions of the
four classes of independent variables, i.e. Ui, eij, (Jij and (J~, the solution to the boundary
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problem of finite deformation theory is that which makes the functional IT 4p or IT 4c station
ary. In fact, with the help of integration by parts and the Green theorem, bIT4p = 0 or
bIT4c = 0 leads to

+ [-2
1(u +U +Uk ,Uk .) -e..Jba - {[(15k,+Uk ·)a··J +Fk} bUk) d VI,} J,l ,I.J IJ I) 1,1 I).J

which gives eqns (1), (2), (19), (15) and (6), as a result of the independence of bu;, bei}> baij
and bat. It is called the generalized mixed variational principle (of four classes of inde
pendent variables). The splitting factor Pijk/ and the associated (Xijk/ can be chosen arbitrarily,
but must satisfy the requirements mentioned in Section 2. For simplicity, one uses the
following abbreviations:

D· == -2
i (U. ·+U '+Uk Uk .)}U 41 J,l ,I,J

Lk == [(bki+Uk,i)aiJ,j+Fk
(26)

(27)

In the following, some varieties of GMVP are given by setting certain constraints
among Ui' eij, aij and at contained in IT 4p and IT 4c '

(I) at = (bikb j/- pijk/)ak/, i.e. eqn (10) taken as a constraint. Then one has

(28)

Thus, from eqns (23) and (24) one obtains the functionals for GMVP with three classes of
independent variables (u;, eij and aij)

Noting eqns (17), (12) and (10), the variational equations bIT 3p = 0 or bIT 3c = 0 leads to
the basic equations, which are equivalent to eqns (1)-(6).

(2) at = (bikbj/- pijk/)ak/ and eij = Dij. From eqns (29) and (30) one can obtain the
functionals for GMVP with only two classes of independent variables (i.e. Ui and ai)

BAS 24:11-D
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Table 1. Functional expressions

Symbols Functionals
Splitting Independent Constraint Euler
factors variables conditions equations

II.p Iv[A*+(uU-ui)eij-B*+Di;O'ij-F.u.JdV- Tp }
!Jij.i

r~·" 1 f'lII"" Iv [(uij-umeij-A*+B*+~Uk.lU'.;O'ij+ L.u.l dV- Tc 3,4
II4pp Iv[PA +(uU-u,;)eij-B*+Di;O'ij-F.u.JdV-Tp }

,(::" ;:(S)II""p Jv[(uij-uU)ei-!JA+B*+ !u•.iu,.;O'ij+L.u.ldV- Tc
P 5,6

II.", Iv(A*-eij!Jij~u",n-B*+Di;O"j-F.u.)dV-Tp }
Pij" (f"

m
II" Jv(B* -A*+e'jPij",nU",n+~U'.iUk.Pij+L.u.) dV- 1;
II,pp Jv(fJA-fJeijuij-(l-fJ)B+Dijuij-F,uddV- Tp } ejj

II ,cp Jv[(l-!J)B-pA+fJeijuu+ !u"iu'.juij+L.uddV- 1',. P
U,

II", Jv[A-(e'j-Di)uu-F,uJdV- Tp }
1.0 u,(s)

n)c! Jv(e,pu- A+~U'.iUk.Pij+L,u.) dV - Tc

II 'pO JV(D';O'ij-B-F.u;jdV-Tp } r,4}
II 'co Jv(B+~U'.iUk.;O'ij+L.u.)dV - Tc

0 P,(s) 5,6

II,? Jv(A*+DiPU-B*-F.u.)dV-Tp }
f3ij.1 (fii mll,c Jv(B* - A*+fJijkP'~ij+ !Uk.iU•.Pij+ Lku.) dV- Tc

ll2pp Iv [f3A + (I-fJ)DijUir(I-p)B-Fku,JdV - Tp }
fJ

ll,cp Jv[(1- (3)B- fJA +PD,;O'lj+ !Uk.IUk.;O'lj+ Lku.] d V - T,
u,

ll2pO Jv(Di;O'ij-B-F,Uk)dV-Tp }
II ,,0 Jv(B+ !U•.iUk.;O'Ij+LkUk) dV- Tc

0 ui(s)

II2pl Jv(A-FkUk)dV-Tp }
1.0 pieS) :2 {4/}

llu' Jv(Di;O'ij- A+~Uk.iUk.Pij+ LkUk) dV - Tc

II,p Jv(A-FkUk)dV-Tp } {Ui> Ui(S)} {\2} {4/}II" JV(B+~Uk.iUk.Pij+LkUk)dV- Tc PieS)

IIOp Jv(A -Fku.) dV- Tp u,(s) 1-5 6
IIo. Jv(B+ 1uk.lUk.jO"i)dV- Tc pieS) 1-4,6 5

Note: the numbers listed in the last two columns stand for certain equations: I for (10), 2 for (2), 3 for (3) or (4)
or D,j = oB/ouij , 4 for (1),5 for (5), 6 for (6). Ui(S) stands for Ui on the boundary Sand pieS) for Pi on S.

The variational equation l5TI2p = 0 or bTI 2c = 0 leads to the required basic equations.
(3) The splitting factor takes some special values. If f3ijkl takes special values, the

functionals defined above may have special expressions, e.g. f3ijkl = f3b ikbjl> where f3 is an
arbitrary scalar function over V, and then the functionals TI qp and TIqc (q = 4,3,2, see Table
1) will contain only one additional function f3(x). If one further sets f3 =1 or 0, they will
give the functionals of the existing variational principles (Washizu, 1975; Qian, 1980),
including the Hu-Washizu and Reissner principles (TI 3p1 and TI 2pO , see Table 1).

The functionals mentioned above are all listed in Table 1, from which one can clearly
see the multiplying procedure of variational principles at various levels. At each level there
are two functional forms: TIqp and TIl(' . q = 4, 3, 2, 1, 0, called the dual forms.
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4. GMVP IN LINEAR THEORY OF ELASTICITY

In linear theory, the basic equations do not contain the terms of higher order and the
expressions of the energy density functions, denoted now by Ao and Bo, can be written
explicitly as Ao = 1S/jkleijekl and Bo = 1Cijkl(fi/'kl, where S/jkl and C ijkl are the elastic tensor
and the compliant tensor, respectively. The stress-strain relations can also be given explicitly
by the generalized Hooke's law

(33)

or

(34)

Thus, eqns (9), (II), (14) and (17)-(19) can be rewritten, respectively, as

(35)

(36)

(37)

(38)

(39)

(40)

Noting Pi == (fijn j and neglecting small quantities of higher order in the functionals Iis\I:d in
Table 1, one can obtain the functionals of GMVP for the linear theory, denoted by rr~p

and n~c (q = 4, 3, 2, 1, 0), e.g.

With the four classes of independent variables, i.e. U;, eij, (fij and (ft, the variational
equation <5rr~p = 0 or rr~p = 0 leads to the basic equations for the linear theory ofelasticity.
Herein the stress-strain relations are expressed by eqn (40), which is equivalent to the usual
one, eqn (33) or (34).

The functionals with three classes of independent variables are

(43)
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where a}j = (DikDjl-fJijkl)(Jkl are constraints, while the independent variables are Ui, eij and
(Jlj' If one sets fJijrrm = - 2AijklCkimn or fJijmn = DImJjn + 2B/jkICklmn, where Aijkl and B ijkl are
so-called higher-order Lagrange multipliers defined by Qian (1983), then rrgp and rrgc will
turn into the functionals rrG( and rrGII presented in Qian (1983).

The functionals with two classes of independent variables U; and (Jij can be deduced
directly from the above equations, e.g.

Equation (45) is the functional presented in Rong (l98Ia) (see eqn (23) therein), which was
called the variational principle with split modulus. Although this functional is a special case
(containing only one arbitrary function fJ) of GMVP, it is the first example of this new type
of variational principle. Its earliest applications were published in Rong (198Ic, d). If one
sets fJ 0.5, then eqn (45) will turn into the functional given by Liang and Fu (1982).

5. A GENERAL CRITERION TO CHOOSE SPLITTING FACTORS FOR FINITE ELEMENT
ANALYSIS

Every functional of GMVP established above contains an arbitrary splitting factor. It
does not affect the theoretically exact solutions, because the Euler equations of these
functionals are completely equivalent to the traditional basic equations. However, it does
have an effect on numerical solutions by FEM and that is why it has been introduced into
the new variational principles. How to choose the splitting factor to give the best numerical
solutions is of great interest in practice. Below a general criterion for a reasonable choice
of splitting factor is suggested, based on the following argument. The fact that the exact
solution to an elasticity problem is not affected by the splitting factor can he restated
mathematically as: the partial variation of any desired quantity, denoted by K (such as
displacement, stress or another quantity such as stress intensity factor) with respect to the
splitting factor is identically equal to zero, i.e. D/iK =0 0, where fJ represents any splitting
factor. But in FEM, the desired quantity, denoted by K, is an approximation of K and
depends on fJ. Thus, a general criterion is suggested as follows

(47)

In order to carry out eqn (47) one may devise various schemes. For instance, according to
the concept of FEM, one may first interpolate fJ in each element and obtain a functional
of nodal variables of fJ. Then one uses eqn (47) to establish simultaneous algebraical equa
tions. This is theoretically correct, but not convenient in practice. Below a practical approach
to the implementation of eqn (47) is suggested, taking one from a large class of finite
element problems as a typical example. By trial computations one can obtain an optimum
value of fJ, say {J, which satisfies eqn (47) quite well. Then for the other problems of the
same class one just uses the chosen fJ instead of choosing it each time. Although this is not
theoretically the best solution, it is rather satisfactory in practice, as shown by the results
obtained by the present author.

As an example, an approximate splitting factor of {J = 0.0001 has been chosen for the
computations of stress intensity factors. The specimen is a tensile strip with an edge crack
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(a) y (b) y (e)

a

log f3
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3.513

3.490 .........__...........--........-+0---
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x

a

Fig. 1. Tensile strip with an edge crack for choosing the optimal splitting factor.

Table 2. Result of computing

Source of results
ajw = 0.5

No. of Percentage
elements K, error (%)

ajw = 0.8
No. of Percentage

elements K, error (%)

GMVP with P= 10" 14 3.513 -0.76 17 18.84 -2.7
Long et al. (1982) 14 3.60 1.7 17 18.53 -4.2
Qian et at. (1980) 448 3.44 -2.8 448 20.05 3.5
Benzley (1974) 110 3.50 -1.04 no 17.50 -9.7
Keer and Freedman (1973) 3.54 19.37

as shown in Fig. I (a) and its details can be found in Long et al. (1982). Eight-node
isoparametric elements are used and the grid pattern is shown in Fig. I (b). The simplest
form of GMVP with q 2, i.e. I1gpp (eqn (45» is employed to establish the finite element
model and the case alw = 0.5 is taken for choosing p. Noting the characteristics of the
stress intensity problems, one puts a constant value p =1= I on only a few elements around
the singularity 0, while on the other elements is put p= I or 0 (for details see Rong (1985».
After calculation, the result is plotted as a curve of the stress intensity factor K 1 vs the
splitting factor p as shown in Fig. I(c). Apparently, when p is approximately 0.0001, the
requirement bpKI = 0 may be considered already satisfied. Therefore, the optimum splitting
factor for the case alw 0.5 is about 0.0001. When calculating stress intensity factors for
the other cases, one does not have to choose peach time, but take p= 0.0001. For example,
the author has also calculated K1 for the case alw = 0.8 by using the same p = 0.000l.
These results and those by some others are listed in Table 2 for comparison. A detailed
description of this example is given in Rong (1985).

The results show that the FEM based on GMVP together with the suggested criterion
gives a solution of higher precision. In addition, due to the flexible adjustability of the
splitting factors, GMVP can be conveniently used to deal with some special problems, such
as ill-conditioned problems, contact bodies and so on. The applications of GMVP to these
problems can be found in Rong (1981c, d, 1985) and Rong and Taylor (1987). Some of the
problems of GMVP require further research, e.g. "what is the difference in the similar two
forms I1qp and I1qc (q = 4,3,2) in terms ofcomputational efficiency?" These will be discussed
by the present author elsewhere.
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